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Abstract. Urban air pollution poses a significant health risk, with over half the global population living in cities where air 10 

quality often exceeds World Health Organization (WHO) guidelines. A comprehensive understanding of local pollution 

levels is essential for addressing this issue. Recent advancements in low-cost sensors and satellite instruments offer cost-

efficient complements to reference stations but integrating these diverse data sources in useful monitoring tools is not 

straightforward. This study presents the updated Retina v2 algorithm, which generates high-resolution urban air pollution 

maps by assimilating heterogeneous measurements into a portable urban dispersion model. Tested for NO₂ concentrations in 15 

Madrid during March 2019, it shows improved speed and accuracy over its predecessor, with the ability to incorporate 

satellite data. Retina v2 balances performance with modest computational demands, delivering similar or better results 

compared to complex dispersion models and machine learning approaches requiring extensive datasets. Using only 

TROPOMI satellite data, citywide NO₂ simulations show an RMSE of 19.3 µg/m³, with better results when hourly in-situ 

measurements were included. Relying on data of a single ground station can introduce biases, which can be mitigated by 20 

incorporating satellite data or multiple ground stations. Including more stations improves accuracy, with 24 stations yielding 

a correlation of 0.90 and an RMSE of 13.0 µg/m³. The benefit of TROPOMI diminishes when data from five or more ground 

stations is available, but it remains valuable for many cities which have limited monitoring networks.  

1 Introduction 

More than half of the world’s population lives in cities, where most people breath air that exceeds the World Health 25 

Organization's (WHO) air quality guidelines (WHO, 2021). Elevated levels of nitrogen dioxide (NO2), primarily from urban 

traffic and residential emissions, significantly contribute to this health issue. NO2 is linked to respiratory diseases, 

particularly asthma, leading to respiratory symptoms (such as coughing or difficulty breathing), hospital admissions and 

visits to emergency rooms. According to the WHO air quality database (WHO, 2023), 77% of the population in the 4,000 
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assessed towns and cities are exposed to mean annual NO2 levels above the recommended limit of 10 µg/m³. This figure 30 

rises to 90% in cities in low- and middle-income countries, paralleling large-scale urbanisation and economic development. 

Addressing urban air pollution requires a detailed understanding of local pollution levels. This is best achieved with a dense 

network of reference stations, as traffic patterns and urban design can cause strong gradients in air pollution (Cummings et 

al., 2022). However, the high costs of installing and maintaining such networks often leave cities, especially in low- and 

middle-income countries, without adequate monitoring infrastructure.  35 

In recent years, alternative air quality measurements from low-cost sensors and satellite instruments have become available. 

The monitoring of urban air quality will greatly benefit from incorporating these complementary measurements (WMO, 

2024). However, integrating different data sources in a transparent manner is challenging because they differ in sampling 

frequencies and spatial representativeness. While low-cost air quality sensors can provide detailed spatial observations in 

urban areas, they often come with significant uncertainties (Snyder et al., 2013). As satellites observe air pollution of the 40 

entire troposphere, the relationship between column concentrations and surface-level concentrations must be resolved first. 

Also, polar-orbiting satellites pass over the same area only once per day, missing a substantial part of the diurnal cycle 

(Boersma et al., 2009).  

Air quality models are therefore essential to create maps from measurements, as they not only fill in the unsampled areas and 

times, but also (in the more advanced data fusion methods) consider the different spatial representativity and accuracy of the 45 

measurements, and —for satellite measurements— the height distribution in column measurements.  

Modelling at the urban scale can be done by Land Use Regression (LUR) models (Hoek et al., 2008), which solve statistical 

relations between surface concentrations and geographic data. They are commonly used in exposure studies, providing maps 

at high spatial resolution but lacking a time component. Another approach is to downscale the output of regional chemical 

transport models to high-resolution sub-grid concentrations (e.g. Denby et al., 2020, Kim et al., 2018). Like LUR models, 50 

Gaussian plume models (e.g. listed in Kakosimos et al., 2010) are widely used in urban settings due to their low 

computational demands. Based on an analytical solution to pollutant transport equations and a detailed emission inventory, 

they can calculate hourly concentrations of air pollutants at street-level under given meteorological conditions.  

Better simulation results are obtained when in-situ measurements are spatially assimilated in modelled concentration fields 

using kriging techniques (Schneider et al., 2017, Criado et al., 2023) or optimal interpolation (Tilloy et al., 2013, Mijling 55 

2020). This significantly reduces both local biases and background biases. 

The TROPOspheric Monitoring Instrument (TROPOMI) is a nadir-viewing imaging spectrometer aboard ESA’s Sentinel-5P 

satellite. Since May 2018, TROPOMI has provided global observations of air quality from space with an unprecedented 

spatial resolution (5.6 x 3.6 km2 at nadir view since 6 August 2019). This resolution offers coarse information on spatial 

patterns of air pollution within urban environments. For instance, tropospheric NO2 column measurements of TROPOMI 60 
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have been used to estimate NOx emissions in Paris (Lorente et al., 2019), to predict daily surface NO2 concentrations in 

Mexico City (He et al., 2023), and to detect spatiotemporal variations of NO2 in Madrid (Morillas et al., 2024).  

TROPOMI observations are used by Kim et al. (2021) to create hourly NO2 maps for Switzerland and northern Italy on a 

100m resolution, in a combination with reference measurements, geographical and meteorological data. Fu et al. (2023) also 

add low-cost sensor data for hourly mapping in Tangshan, China. Both studies show that satellite data can contribute 65 

significantly to surface NO2 mapping, despite its coarse resolution and the fact that it is only available once a day under near 

cloud-free conditions. 

Recurrent complication in urban air quality modelling is the need of an up-to-date emission inventory at a high resolution, 

and realistic estimations of the regional background concentrations. Also, many urban data fusion applications depend on 

machine learning (e.g. Kim et al., 2021, He et al., 2023) or a detailed local air quality model (e.g. Schneider et al., 2017, 70 

Criado et al., 2023). This complicates portability to other cities where the required input data might not be available. 

The Retina algorithm (Mijling 2020) provides a physics-based and portable approach. It has been developed specifically for 

observation-based high-resolution modelling of urban air pollution using heterogeneous air quality measurements (i.e. of 

different accuracy and origin). Central in Retina is the open-source AERMOD dispersion model (Cimorelli et al., 2004), 

developed by the American Meteorological Society (AMS) and United States Environmental Protection Agency (EPA). The 75 

model is driven by meteorology and local emissions constructed from proxy data. Observations are used for emission 

optimization and spatial concentration assimilation. It generates hourly maps of air pollutant concentrations at street-level. 

Retina v2, described in this paper, has undergone significant updates to enhance its speed and accuracy. It is faster and uses 

less computational resources by using AERMOD only for dispersion kernel calculations (Sect. 2.3.1). The estimation of 

background concentrations has been improved (Sect. 2.2.1). The NO2/NOx ratios are estimated more accurately by replacing 80 

the Ozone Limiting Method with a non-linear regression method (Sect. 2.3.2). The estimation of the sectoral emission 

factors is better stabilised by implementation of a Kalman filter (Sect. 2.3.4). The spatial assimilation of concentration 

measurements is improved by including time-dependent dispersion characteristics in the model error covariances 

(Sect. 2.3.5). Most notably, for the CitySatAir project (part of ESA’s EO Science for Society program) we extended the 

algorithm with an additional module to incorporate tropospheric column concentrations of NO2 measured with TROPOMI 85 

(Sect. 2.3.3). 

2 Method 

The added value of NO2 column measurements from space is evaluated through their application in Madrid, Spain, for the 

period of March 2019. The city’s extensive network of NO2 reference stations allows for the exploration of different 

measurement configurations, including scenarios with and without TROPOMI observations. 90 

The municipality of Madrid extends over an area of about 40 x 43 km2, with a population of approximately 3.4 million 

people. Urban NO2 pollution levels are amongst the highest in Europe, regularly exceeding the air quality guidelines set by 
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the WHO (WHO, 2021), which recommend limits of 10 μg/m3 for annual averages and 25 μg/m3 for daily averages. The city 

of Madrid ranks first in Europe for mortality linked to NO2 pollution, according to a recent health impact study by ISGlobal, 

which analysed nearly 1000 European cities (Khomenko et al. 2022). Traffic and residential emissions are mainly 95 

responsible for the high surface concentrations found in the city, as Madrid has no heavy industry or other important NO2 hot 

spots in its immediate vicinity. 

2.1 NO2 observations 

2.1.1 Reference network 

Common equipment to perform reference measurements of NO2 include the Teledyne API 200E and a Thermo Electron 42i 100 

NO/NOx analyser, both based on chemiluminescence. A catalytic–reactive converter converts NO2 in the sample gas to NO, 

which, along with the NO present in the sample, is reported as NOx. NO2 is then calculated as the difference between NOx 

and NO. We use an accuracy of 4% of the NO2 measurements (GGD, 2014). Note that this might be an underestimation for 

locations downwind of source areas, as the molybdenum converter also reduces other reactive nitrogen species such as PAN 

and HNO3 (especially found in aged plumes) to NO, introducing a positive bias in the NO2 measurements (Steinbacher et al., 105 

2007). 

Madrid has an extensive network of 24 reference sites measuring hourly NO2 concentrations (see Fig. 1), from which 9 

qualify as street stations, 12 as urban background stations, and 3 as suburban background stations. Hourly measurements of 

the network are published in near real-time as open data at the Madrid Open Data Portal (https://datos.madrid.es). Lower 

concentrations of NO2 are found in summertime, due to favourable atmospheric conditions (e.g. higher boundary layer 110 

height) and less emissions during the holiday period. Highest concentrations are found in wintertime, when monthly 

averaged values are well above 40 μg/m3 at roadside and urban background sites. The network-wide average in March 2019 

(36.2 μg/m3) closely reflects the annual average (34.5 μg/m3). 
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 115 
Figure 1: Reference network for NO2 measurements in Madrid. The red line indicates the municipality border. Basemap source: © 
OpenStreetMap contributors © Carto, 2024. Distributed under a Creative Commons BY-SA License. 

2.1.2 TROPOMI retrievals 

TROPOMI is a nadir-viewing imaging spectrometer aboard ESA’s Sentinel-5P satellite. Since May 2018, TROPOMI has 

provided global observations of air quality from space with an unprecedented spatial resolution (5.6 x 3.6 km2 at nadir view 120 

since 6 August 2019), enabling it to offer coarse information on spatial patterns and gradients of air pollution within urban 

environments. 

Being in a sun-synchronous orbit at 824 km altitude, Sentinel-S5P overpasses Madrid daily around 13:00 UTC. At times the 

urban area is sampled from two adjacent orbits, typically around 12:30 and 14:10 UTC. At every overpass the retrieval 

footprints are located differently, sampling different parts of the urban area.  125 

From the radiance and irradiance spectra the NO2 slant column density can be derived, which is divided into a stratospheric 

and tropospheric part. By applying an appropriate air mass factor the tropospheric slant column is converted to a 

tropospheric vertical column density and its accompanying averaging kernel. We use the latest reprocessed product for 

TROPOMI tropospheric NO2 columns, version 2.4 (Eskes et al., 2022; van Geffen et al., 2022), which implements a new 

surface albedo climatology derived from TROPOMI observations, including the viewing-angle dependence of the scattering 130 

at the surface.  

Although it is recommended that for straightforward application only retrievals with a quality value ≥0.75 should be used 

(i.e. valid retrievals with cloud radiance fractions below 50%), this criterion is relaxed to ≥0.5 (i.e. valid retrievals, including 

under cloudy conditions) as the averaging kernel is carefully applied (see Van Geffen et al., 2022). Also, only footprints 
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which cover the studied domain by more than 50% are used. In this way, there are on average 14.2 valid retrievals found per 135 

day in March 2019. 

2.2 Model input data 

2.2.1 Background concentrations 

An important fraction of the air pollution is transported from upwind regions (see e.g. Harrison, 2018). Using realistic 

background concentrations of NO2 is therefore crucial as the dispersion simulation only accounts for locally generated NO2 140 

within the domain.  

Here we use hourly data from the European air quality ensemble from the Copernicus Atmosphere Monitoring Service 

(CAMS) (Marécal et al., 2015, METEO-FRANCE et al., 2020), which for 2019 data consist of 9 state-of-the-art numerical 

air quality models. More specifically, the ensemble median of the validated reanalysis is used, a data product for which each 

ensemble member assimilated validated hourly observations of air pollutants as reported to the European Environment 145 

Agency. The CAMS regional ensemble covers Europe at a resolution of 0.1 x 0.1 degree. Note that the coarseness of the data 

product makes it unsuitable for monitoring urban air quality in detail, as the strong concentration gradients found around 

strong sources will be averaged out, leading to an underestimation of NO2 concentrations, see Fig. 2.  

 
Figure 2: NO2 surface concentrations in Madrid, March 2019, from bilinear interpolation of the average values of the CAMS 150 
reanalysis. CAMS grid cells are shown in thin black lines. Also shown are the mean concentrations measured by the reference 
network.  

To avoid double counting of locally produced NO2 concentrations, we take for each hour a weighted average of the CAMS 

concentrations found along the municipal perimeter. Let 𝑏!(𝐱) represent the interpolated CAMS concentration at location 𝐱, 

𝐞" the unit vector along the wind direction, 𝐧 the normal vector on the perimeter (pointing outwards), and ℒ the part of the 155 
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perimeter where 𝐞" ∙ 𝐧 < 0 (i.e. where background pollution is flowing into the municipal domain). Then the weighted 

average for this hour is calculated from the line integral 

𝑏 = #
$ ∫ 𝑏!(𝐱)𝐞" ∙ 𝐧𝑑𝑙

	
ℒ  , with 𝑊 = ∫ 𝐞" ∙ 𝐧𝑑𝑙

	
ℒ  , (1) 

where 𝑑𝑙  represents the elementary arc length along the perimeter. The resulting background value 𝑏  is taken 

homogeneously for the entire domain, thus avoiding the use of more advanced advection schemes. The background 160 

concentration of ozone, needed in the calculation of the NO2/NOx ratio is calculation from CAMS ozone fields in the same 

manner. 

2.2.2 Meteorology 

Meteorology is an important ingredient for dispersion modelling, as it determines how the air pollutant is transported 

horizontally and vertically. AERMET, the meteorological preprocessor of AERMOD, requires both surface meteorological 165 

data (cloud cover, temperature, humidity, dew point temperature, pressure, precipitation, wind speed and direction) and 

upper air meteorological data (temperature, humidity, wind speed and direction in vertical layers). The wind speed and 

direction are also used to determine the influx of background concentrations and the main axes of the model error covariance 

(Sect. 0). 

We use the collection of short-range forecasts (issued at 0 UTC and 12 UTC) from the archive of the European Centre for 170 

Medium-Range Weather Forecasts (ECMWF) at the supercomputing facility in Bologna. It is retrieved as 3-hourly output at 

a 0.05-degree spatial resolution. Hourly meteorological fields are obtained by temporal interpolation and then interpolated to 

a representative location central in the Retina domain.  

2.2.3 Emission proxies 

An important unknown when modelling street-level urban air pollution is the location and strength of the urban emissions. 175 

For many cities this information is either unavailable or outdated. By describing traffic and residential emissions with 

proxies taken from open data sets (see Fig. 3) we enable a versatile model setup which can be applied easily to other cities. 

The domain boundary is extended outward by 1500 m to account for contributions from sources close to the municipal 

border. Other sectoral emissions, e.g. from industry, will be accounted for indirectly in either an increased background field 

or in additional residential emissions.  180 
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Figure 3: Proxies used for the estimation of urban emissions. The Retina algorithm distinguishes between highways, primary 
roads, and residential emissions. Nearby emissions outside the municipal border are also considered. 

Road location and road type classification is taken from OpenStreetMap (OSM). All road segments labelled “motorway” or 

“trunk” are linked to the highway class. All "primary", "secondary" and "tertiary" segments are linked to the primary road 185 

class. 

The Madrid Open Data Portal publishes vehicle counts at approximately 4000 locations, mainly from inductive loop sensors 

at traffic junctions. The data files contain vehicle counts in 15-minute bins, which are aggregated into one-hour bins to align 

with the temporal resolution of the simulations. For each location, a monthly averaged traffic volume cycle is calculated, 

separated by hour of day and day of week. 190 

Between counting locations, the traffic flow is estimated by spatial interpolation using inverse-distance weighting. The 

interpolation is done separately for vehicle counts at highways and primary road networks, as they have incomparable traffic 

volumes. 

Population density is a good proxy for residential emissions from activities such as heating and cooking. We use the 

population densities from the Global Human Settlement project (Freire et al., 2016) which are provided on a 250 m 195 

resolution. To reflect the observation that per capita residential emissions decrease when people live closer to each other 

(e.g. Makido et al., 2012), the emission fluxes are scaled proportionally to the square root of the population density. 
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The proxy data 𝑃'  for sector 𝑠  (here traffic and residential) are gridded on a high-resolution 10 m grid to enable fast 

application of the dispersion kernel (see 0). Sectoral NOx emissions for a grid cell indexed with (𝑖, 𝑗) are calculated by 

applying the emission factors 𝑓' to the proxy data:  200 

𝐸'(𝑖, 𝑗) = 𝑓'𝑃'(𝑖, 𝑗)	 (2) 

Emissions change over the day. For traffic emissions this is described by a time dependency in the proxy data. The diurnal 

cycle in residential emissions, however, is described by 24 different emission factors (each for one hour), as its proxy data 

are constant in time. 

2.3 The revised Retina algorithm 205 

Retina uses past observations for emission optimisation (minimizing the general model bias) and current observations for 

spatial concentration assimilation (reducing local model biases). 

In the emission optimisation step (represented in Fig. 4) the algorithm fits emissions factors for the proxy emissions that best 

match the spatio-temporal concentration patterns observed by the reference network. The optimisation is repeated every 24 

hours (see Sect. 0), using the emission factors and covariances of the previous estimation as a priori. This approach avoids 210 

the need of detailed knowledge of vehicle fleet composition and solves mismatches between theoretical and real-world 

emissions.  It also compensates for model biases resulting from incorrect chemistry (e.g. lifetime) and unaccounted 

(seasonal) emission cycles. 

 
Figure 4: Schematic representation of Retina’s emission optimisation workflow. Starting with a priori emission factors, the 215 
AERMOD dispersion model simulates NO2 concentrations at the observation locations for a 24-hour period. The Kalman filter 
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infers from the difference between observation and simulation the best update for the emission factors. These values are passed to 
the next analysis period. 

With the most recent estimation of emission factors, Retina simulates the surface concentrations for a specific hour at all 

62,266 locations of a non-regular, road-following mesh (see e.g. Lefebvre et al., 2011).  220 

Next, in-situ observations are spatially assimilated in the simulated concentration field using optimal interpolation (Daley, 

1991), see Fig. 5. This technique allows for the assimilation of surface measurements with different error margins. At the 

observation locations, model values are corrected towards the observations. In the surrounding areas, the balance between 

the model and observation errors determine how the simulation is adjusted (see Sect. 2.3.5). 

 225 
Figure 5: Schematic representation of Retina’s hourly simulation and assimilation workflow. The dispersion model uses optimised 
emissions and background concentrations to simulate surface concentrations. In-situ observations (if available) are assimilated in 
an optimal interpolation scheme. 

2.3.1 Dispersion kernel 

Due to the large number of emission sources, using a straightforward AERMOD configuration can result in long calculation 230 

times, especially if simulations must be performed at several vertical levels to recreate the tropospheric columns. Instead, we 

adopt the approach suggested by Masey et al. (2018), using AERMOD exclusively to calculate the dispersion kernel. This is 

the dispersion of a unit NOx emission for a specific hour under given meteorological conditions (e.g., wind speed and 

direction, atmospheric stability, and boundary layer height). 

Removal processes of NOx are modelled with an exponential decay, which is included in the kernel calculation. In urban 235 

settings, the typical lifetime of NOx is on the order of a few hours (Beirle et al., 2011), and changes significantly when 

plumes travel from source areas and mix with clean air (Krol et al., 2024). However, as emitted NOx has a relatively short 
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residence time in urban areas, the specific value of its lifetime is not very critical. We use a heuristic value of 2 hours 

throughout this study. 

Dispersion kernels are computed for all emission release heights of the emissions and all receptor heights. Sectoral release 240 

heights are 0.5 m for traffic and 10 m for residential emissions. These sector-specific dispersion kernels 𝐾' are then gridded 

onto the regular high-resolution grid, aligning with the emission grid 𝐸. Examples of dispersion kernels are illustrated in 

Fig. 6.  

 
   Release height 0.5 m 

(traffic) 
   Release height 10 m 

(residential) 
 Release height 0.5 m 

(traffic) 
Release height 10 m 

(residential) 

  
2019-03-01, 09:00 UTC 2019-03-01, 22:00 UTC 

 245 
Figure 6: Examples of dispersion kernels at different release heights and winds (i.e. different atmospheric stability) for surface 
concentration calculation. The receptor height of the kernels is at 1,5 m. Distances are given in meters. 

The NOx concentration 𝑐()* (in NO2 mass equivalent per volume) for a receptor located in grid cell (𝑖	, 𝑗) can now be 

calculated as a superposition of all dispersed emissions, for all contributing emission sectors 𝑠 

𝑐()*(𝑖, 𝑗) = ∑ ∑ 𝐾'(𝑖 − 𝑖+, 𝑗 − 𝑗′)𝐸'(𝑖+, 𝑗+),+-+'  (3) 250 

This can be interpreted as an element-wise matrix multiplication (i.e., the Hadamard product) of the mirrored dispersion 

kernel with its origin at (𝑖	, 𝑗) with the entire emission grid. In first order, the NOx concentrations depend linearly on 

contributing sources; an NO2/NOx ratio is applied afterwards (see Sect. 0). Transport over longer distances must be 

accounted for to prevent underestimation: although a single grid cell at a long upwind distance may contribute only a small 

amount, the cumulative effect from numerous such grid cells becomes significant. In our algorithm we consider 255 

contributions up to 30 km to account for transport effects in the entire simulation domain. To ensure computational 

efficiency, contributions at longer distances are computed at lower resolutions, as emission source locations become less 

critical with increasing distance. 
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2.3.2 Surface concentration simulation 

We calculate NO2 concentrations from NOx concentrations using a time and location dependent NO2/NOx ratio. The 260 

dynamic equilibrium between NO and NO2 is affected by temperature, available ozone (which generates NO2 from NO), and 

solar radiation (which generates NO from NO2). The local NO2/NOx ratio is hourly estimated using parameters available 

during simulation: 

● the local simulated NOx concentration. 

● the background O3 concentration, taken from the regional CAMS ensemble. 265 

● the background NO2 concentration, also taken from the regional CAMS ensemble. 

● the temperature, as a measure of reaction speed for conversion NO to NO2. 

● the Solar Elevation Angle (SEA), as a measure of radiation available for photolysis of NO2. 

As the dependence on these parameters is non-linear, we train an extreme gradient boosting (XGBoost) model (Chen and 

Guestrin, 2016) to estimate NO2 ratios at simulation time (see Sect. S1 in the Supplement). 270 

From the NOx concentration 𝑐()* calculated by Eq. 3, the NO2/NOx ratio 𝑟, and the background concentration 𝑏 (from 

Eq. 1), we calculate the NO2 surface concentration 𝑐 as 

𝑐(𝑖, 𝑗) = 𝑏 + 𝑟(𝑖, 𝑗)𝑐()*(𝑖, 𝑗) (4) 

2.3.3 Column concentration simulation 

For column concentration simulations, which are necessary for comparison against satellite observations, we use the same 275 

approach as for surface simulations but with different settings (see Table 1).  
 

Table 1: Overview of simulation settings 

Surface simulation Tropospheric column simulation 

Surface level only (1.5 m) 9 horizontal levels: 0, 1.5, 50, 250, 500, 1000, 
2000, 3000, 5000 m 

10 m horizontal resolution 250 m horizontal resolution 

NO2 ratio from XGBoost model NO2 ratio from CAMS 

NO2 background concentration from CAMS NO2 background column from fit 

 

Given the large footprints of the satellite observations relative to the urban domain, it is crucial to maximize the information 280 

content from single NO2 retrievals. Gridding and averaging to a model grid, or clustering orbits in time, would result in 
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valuable information loss. Instead, we project simulation results to individual footprints in individual orbits, following these 

steps: 

1. Modelling of NOX concentrations at high resolution at 9 different heights. We use the vertical grid definition from 
the CAMS regional ensemble from surface to 5 km.  285 

2. Spatially aggregating the simulated values to individual satellite footprints. The coarser resolution in the horizontal 
(250 m) is justified as the satellite footprints are in the order of kilometres. 

3. Temporal interpolation of simulation values to the exact satellite overpass time. 

4. Applying the averaging kernel associated with the retrieval, after conversion of the concentration profile to partial 
columns matching the kernel’s levels. This reduces errors resulting from profile assumptions in the retrieval method 290 
(Eskes and Boersma, 2003).  

Finding a realistic NO2/NOx ratio for column simulation is not straightforward, as the chemical equilibrium changes with 

height. Close to sources, lower layers exhibit smaller ratios at low temperatures (when conversion from primarily emitted 

NO is not established yet), while higher layers show reduced NO2 due to stronger photodissociation from solar irradiance. 

An intricate chemical analysis is avoided by taking the ratio 𝑅 from columns of the CAMS regional ensemble (see S2 in the 295 

Supplement). For Madrid, 𝑅 fluctuates between 0.4 and 0.8, with the lowest values found in winter. Note that NO2/NOx 

ratios in columns are generally higher than surface ratios due to increased ozone availability. 

The column simulation includes only local contributions, excluding the background column (i.e., concentrations from 

emissions outside the domain and the free tropospheric column above the boundary layer). To simplify matters, we do not 

simulate this background column. Instead, the background column concentration is determined for each overpass by fitting 300 

the simulated column concentrations to the observations. 

Let 𝐶./'()* be the simulation of the partial NOx column concentration for the footprint of retrieval 𝑘, for atmospheric layer 𝑙, 
and for emitting sector 𝑠.	𝐶./'()* is calculated from dispersed proxy data following step 1 to 3. Let 𝐴./ be the averaging kernel 
element for layer 𝑙 and retrieval 𝑘. With the ratio 𝑅 known from CAMS and the background column 𝐵 fitted, we can write 
for the simulated tropospheric NO2 column 𝐶: 305 

𝐶. = 𝐵 + 𝑅. ∑ 𝐴./ ∑ 𝐶./'()*'/  (5) 

Figure 7 demonstrates that this approach effectively simulates the location, shape, and strength of the pollution plume over 

the city. The 𝑦-intercept in the scatter plots represents the estimated background concentration 𝐵, which is determined using 

ordinary least squares regression, using the reciprocal of the retrieval error as error weights.  
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 310 

Figure 7: Three examples of tropospheric NO2 columns over Madrid under different wind speeds and directions (indicated by the 
black arrows). Left panels show retrievals from TROPOMI in single overpasses. Middle panels show corresponding column 
simulations (including background columns) by Retina, where emission factors have been optimised before against surface 
concentrations. The background columns are estimated from the linear fit between simulations from local emissions and 
observations (right panels).  315 

2.3.4 Emission optimisation: estimating emission factors 

In the dispersion modelling described above, the sector-specific emission factors (𝑓' ) remain unknown. These can be 

estimated from the observations. Rewriting Eqs. (2) to (5), we can express simulations of both NO2 surface concentrations at 

location 𝑖	and tropospheric NO2 column concentrations at footprint 𝑘 as a linear combination of 𝑓': 

𝑐, = 𝑏 + 𝑟, ∑ 𝛼,'𝑓''   and  𝐶. = 𝐵 + 𝑅. ∑ 𝛽.'𝑓''  (6) 320 

Here, 𝛼,'  and 𝛽.'  are calculated from the dispersion of sectoral proxy data by the dispersion kernels, 𝑏  and 𝐵  are the 
background concentration at the surface and the background column concentration respectively, and 𝑟  and 𝑅  the 
corresponding NO2/NOx ratios. 

Finding the emission factors from observations is an ill-posed inverse problem, which we regulate here with a Kalman filter. 

The technical description of the estimation is described in Sect. S3 of the Supplement. For in-situ observations, the state 325 

vector consists of 25 unknown 𝑓' values: one emission factor for traffic, and 24 elements describing the diurnal cycle of the 

residential emissions. This is different when using TROPOMI observations only, as they only provide information around 

overpass time. In this case, we use an a priori diurnal cycle for residential emissions (see Sect. S4). The state vector is then 

reduced to two unknowns: one emission factor for traffic and one factor that scales the a priori residential diurnal cycle. 

By carefully selecting the covariances in the filter we optimise the response time without introducing too much noise from 330 

measurement and model errors. Starting with an arbitrary state vector, a spin-up time of at least one month (i.e. ~30 
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optimisation iterations) is needed. Figure 8 shows an example how satellite observations of a single orbit over Madrid are 

used for an updated estimation of the emission factors. 

 
Figure 8: Example of the Kalman filter applied to TROPOMI observations in a single orbit over Madrid on March 8, 2019. The 335 
grey dots represent the simulated tropospheric column concentration values, which show a clear underestimation for that day. 
After applying the Kalman filter the emission factors are updated, resulting in new simulations (blue dots) that are closer to the 
𝒙 = 𝒚 line. The updated emission factors are used as a priori in the emission optimisation of the following day. 

2.3.5 Spatial assimilation of surface concentrations 

Retina uses the optimised emissions to simulate hourly surface concentration fields, which serves as a priori for the spatial 340 

assimilation of in-situ measurements. This assimilation process corrects local model errors from e.g. incorrect proxy data or 

inhomogeneities in the background field. With vector 𝐱𝐟  representing the simulated surface concentration field (i.e. the 

forecast), and vector 𝐳 containing the in-situ observations, the statistical interpolation can be written as:  

𝐱1 = 𝐱2 +𝐊(𝐳 − 𝐻(𝐱2)) (7) 

𝐊 = 𝐏2𝐇3M𝐇𝐏2𝐇3 + 𝐑O (8) 345 

The update of the forecasted field (𝐱1 = 𝐱2)  depends on the difference between the observations 𝐳 and the collocated 

simulations 𝐻(𝐱2). Matrix 𝐇 maps the simulations to the observation locations, and 𝐑 contains the observation covariances, 

as in Mijling (2020). The update is determined by the Kalman gain matrix 𝐊 which balances between the observation error 

and the model error. Figure 9 illustrates this spatial assimilation cycle. 

The model error covariance matrix, 𝐏2, represents the spatial extent of model errors: an error at the observation location 350 

implies errors in nearby areas. This covariance is approximated by accounting for the spatial representativity of observations, 

which varies between street and background locations, and by incorporating hourly changes in atmospheric dispersion, 

writing: 
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cov(𝐱#, 𝐱4, 𝑡) = 𝜎#𝜌5(𝐱#, 𝐱4)𝜌6(𝐱# − 𝐱4, 𝑡)𝜎4 , (9) 

where 𝜎# and 𝜎4 are the model errors at location 𝐱# and 𝐱4. 𝜌5 represents the correlation between modelled time series at 355 

these locations (which is here calculated from all simulations for March 2019). Correlations between traffic locations and 

background locations will be lower than between similar locations, therefore 𝜌5 reduces the impact of an observation on 

areas it is not representative of (see Fig. S6).  

New in Retina v2 is the inclusion of 𝜌6 , representing the spatial correlation due to the time-dependence in pollutant 

dispersion. We want to describe this in terms of the two-dimensional dispersion kernel introduced in Sect. 0. As 360 

demonstrated in Sect. S5 of the Supplement, 𝜌6 can be calculated by multiplying the 2D kernel with a copy of itself, shifted 

by the distance 𝐱# − 𝐱4. This results in a dispersion correlation field which is symmetric along the downwind and crosswind 

axes. The correlation at a distance d along each main axis can be approximated with  

𝜌6(𝑑) ≈ (1 + |𝑑 𝐿⁄ |)7.9:exp(−|𝑑 𝐿⁄ |7.9:)  ,  (10) 

with 𝐿 the fitted correlation length for the considered hour. Typically, the correlation lengths are larger at night and shorter 365 

during the day. The exponent 0.75, determined heuristically, provides representative high correlations around the 

measurement location and best captures the decaying tail.  
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Figure 9: Spatial assimilation for 7 March 2019, 13:00. Starting from the top-left panel and moving counter-clockwise: in-situ 
observations and the forecasted field based on optimised emission factors; difference between observations and simulation; 370 
concentration update using optimal interpolation; a posteriori field with assimilated observations. 

3 Results 

3.1 Model accuracy with TROPOMI-only data 

As explained in Sect. 2.3.3 and 2.3.4, retrievals in individual overpasses of TROPOMI can be used to optimise the emissions 

for the dispersion model. We evaluate the results when optimisation is done at 24-hour intervals, with a two-month spin-up 375 

time to ensure convergence from a priori values. The space-derived emission factors are used to simulate hourly surface 

concentrations at a high resolution, as shown in Fig. 10.  
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Figure 10: Simulation of NO2 surface concentrations by Retina averaged for March 2019, using TROPOMI observations for daily 
estimates of emission factors. 380 

 

The hourly NO2 concentrations are validated against time series at the 24 sites of the reference network.  The 

statistics of the hourly time series of Retina+TROPOMI and the regional CAMS ensemble are listed in Table 2. We 

use three different statistical parameters for evaluation: 

● Correlation: the Pearson correlation coefficient. A value closer to 1 indicates a better capacity to describe the 385 
hourly dynamics of NO2 concentrations. However, the model might still be off by a bias and/or a multiplication 
factor. 

● Bias: difference between the average simulated value and the average observed value in the considered period. A 
negative value indicates a systematic underestimation of the simulation, while a positive value indicates a 
systematic overestimation of the simulation. 390 

● RMSE: the root mean square error. A lower value indicates a smaller distribution of simulations around the true 
values. Note that the RMSE can be dominated by a bias.  

As expected, the interpolated CAMS reanalysis shows a strong negative bias (-10.0 μg/m3 on average), particularly at 

roadside locations. The correlation, in contrast, is quite high (0.86 averaged over all 24 reference sites). This can be 

attributed to the CAMS ensemble members assimilating observations from a selection of background stations, namely 395 

ES0124, ES0126, ES1532, ES1939, ES1942, ES1947, and ES1946 (see CAMS, 2022). 

Dispersion modelling based on TROPOMI-estimated emissions produces realistic ground concentrations: the absolute biases 

are reduced at most reference sites (from 10.0 to 0.8 μg/m3 on average), particularly at roadside and urban background 
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locations. However, this improvement comes at the cost of introducing more scatter, resulting in lower correlation (0.74 on 

average), and an RMSE increasing from 18.1 to 19.3 μg/m3. 400 

 
Table 2: Retina validation statistics for hourly surface NO2 concentrations when optimising emissions using TROPOMI data 

(validation against interpolated CAMS concentrations in parentheses) 

 Overpass hours (12-14 UTC) All hours 

Location and type correlation RMSE (μg/m3) bias (μg/m3) correlation RMSE (μg/m3) bias (μg/m3) 

ES0115  street 0.823 (0.825) 13.8 (19.2) -10.8 (-17.3) 0.777 (0.868) 18.7 (21.9) -5.9 (-16.6) 

ES0118  street  0.610 (0.794) 20.4 (32.8) -15.7 (-31.3) 0.714 (0.831) 24.1 (33.3) -9.3 (-28.7) 

ES0120  street  0.860 (0.917) 14.9 (25.7) -7.6 (-21.8) 0.747 (0.814) 19.9 (19.8)  5.6 (-12.4) 

ES1426  street  0.848 (0.959) 9.7 (12.2)  4.8 (-10.1) 0.824 (0.911) 17.5 (14.8)  6.5 (-8.7) 

ES1521  street  0.829 (0.922) 8.9 (13.9) -2.0 (-11.5) 0.738 (0.900) 19.1 (21.0) -0.5 (-14.6) 

ES1525  street  0.700 (0.851) 16.9 (17.4) 10.9 (-14.9) 0.708 (0.850) 25.5 (18.6) 13.3 (-12.1) 

ES1938  street  0.813 (0.890) 12.9 (17.3) -4.1 (-12.8) 0.713 (0.850) 20.5 (15.9)  5.0 (-8.0) 

ES1940  street  0.794 (0.865) 12.5 (20.5) -4.4 (-16.8) 0.736 (0.831) 19.3 (19.1)  4.3 (-12.6) 

ES1943  street  0.636 (0.775) 15.4 (28.6)  2.1 (-26.4) 0.722 (0.823) 26.8 (38.4) -5.2 (-31.2) 

ES0124  urban background 0.836 (0.961) 10.4 (13.4) -2.2 (-10.0) 0.795 (0.918) 16.4 (15.4)  0.8 (-9.6) 

ES0125  urban background 0.881 (0.938) 6.9 (7.0) -2.5 (-4.9) 0.817 (0.935) 23.1 (22.1) -11.4 (-14.7) 

ES0126  urban background 0.906 (0.962) 8.5 (7.8) -4.3 (-5.5) 0.802 (0.910) 15.7 (12.5) -4.1 ( -6.1) 

ES1422  urban background 0.746 (0.810) 11.2 (12.6) -5.9 (-9.1) 0.683 (0.860) 18.1 (12.7)  1.6 ( -5.7) 

ES1532  urban background 0.849 (0.937) 8.0 (8.2) -2.9 (-6.3) 0.779 (0.916) 17.0 (13.1) -1.2 ( -6.8) 

ES1645  urban background 0.777 (0.877) 10.1 (10.2)  1.0 (-5.4) 0.802 (0.868) 16.5 (20.1) -2.0 (-12.4) 

ES1937  urban background 0.794 (0.887) 9.6 (9.1) -2.8 (-5.6) 0.711 (0.893) 19.3 (13.5) -0.9 ( -5.9) 

ES1939  urban background 0.893 (0.958) 10.6 (8.7) -2.1 (-3.2) 0.586 (0.807) 21.5 (12.7)  7.2 (3.1) 

ES1941  urban background 0.786 (0.822) 6.9 (8.4) -3.0 (-6.1) 0.744 (0.867) 18.9 (16.9) -6.0 (-10.4) 

ES1942  urban background 0.663 (0.937) 11.7 (11.2)  2.1 (-8.2) 0.728 (0.895) 21.9 (26.3) -4.8 (-19.7) 

ES1944  urban background 0.876 (0.935) 8.8 (12.6) -3.0 (-9.5) 0.782 (0.872) 16.6 (17.2)  2.2 ( -9.3) 

ES1947  urban background 0.851 (0.905) 7.7 (5.7)  4.2 (-0.8) 0.740 (0.854) 17.9 (14.9)  5.8 ( -4.1) 

ES1193  suburban backgr. 0.912 (0.913) 8.1 (6.6) -2.2 (0.2) 0.669 (0.782) 15.3 (13.7)  3.1 (5.9) 

ES1945  suburban backgr. 0.820 (0.862) 7.2 (6.2)  3.9 (-3.4) 0.702 (0.623) 16.1 (10.1) 10.1 (1.4) 

ES1946  suburban backgr. 0.852 (0.968) 9.6 (7.3)  1.8 (-1.6) 0.737 (0.889) 17.8 (11.4)  6.1 (-0.5) 

Mean 0.806 (0.895) 10.9 (13.4) -1.9 (-10.1) 0.740 (0.857) 19.3 (18.1) 0.8 (-10.0) 

 

Satellite observations can only estimate emissions around overpass time. Wrong assumptions in the diurnal cycle for other 405 

hours introduce an additional error. Therefore, the statistics improve when evaluated for overpass hours only (12:00 to 14:00 

UTC): the correlation is higher (0.81) and RMSE is lower (10.9 μg/m3). 

A large negative bias is still found at ES0118 (Escuelas Aguirre), which is close to a busy intersection. Retina might 

underestimate the local traffic flow here, or the additional pollution burden due to deceleration and acceleration of congested 
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traffic. A notable overestimation of NO2 concentrations occurs at location ES1525 (Cuatro Caminos). This is subject to 410 

further investigation; it might be related to an overestimation of local traffic intensities. 

3.2 Model accuracy under different network configurations 

The Retina algorithm can also ingest in-situ measurements of one or more ground stations to estimate the emissions factors. 

The extent and the distribution of this observation network will affect the quality of the emission estimations and therefore 

the accuracy of the NO2 simulations. 415 

First, we assess the influence of station location on emission optimisation using a single reference station, both with and 

without satellite data. Table 3 summarises the average validation statistics for hourly simulated NO2 concentrations across all 

24 observation locations. 

 
Table 3: Mean validation statistics using different reference stations for emission optimisation, 420 

sorted from high to low bias. The right column lists the corresponding total emission estimation.  
Outside parentheses: including TROPOMI data; inside parenthesis: excluding TROPOMI. 

observations 

from correlation RMSE (μg/m3) bias (μg/m3) emission (Mg NO) 

ES1943 0.731 (0.723) 26.7 (29.0) 12.8 (17.2) 2084 (2638) 

ES0125 0.748 (0.758) 24.7 (24.5) 12.3 (13.2) 2014 (2200) 

ES0118 0.739 (0.750) 23.7 (24.1) 9.7 (12.6) 2285 (2755) 

ES1942 0.759 (0.760) 21.1 (21.1) 7.9 (7.9) 1647 (1651) 

ES1941 0.753 (0.755) 21.5 (21.1) 8.2 (7.7) 1708 (1669) 

ES0115 0.752 (0.756) 20.4 (20.6) 6.0 (7.6) 1791 (2086) 

ES1521 0.781 (0.784) 18.6 (18.3) 3.8 (3.6) 1475 (1496) 

ES1532 0.775 (0.782) 18.3 (17.8) 2.3 (2.1) 1325 (1344) 

ES0126 0.764 (0.778) 18.4 (17.7) 1.4 (1.1) 1234 (1244) 

ES1937 0.776 (0.781) 17.8 (17.6) 0.7 (1.0) 1221 (1260) 

ES1645 0.772 (0.778) 18.1 (17.7) 1.5 (0.7) 1208 (1144) 

ES0124 0.783 (0.793) 17.7 (17.1) 1.0 (0.4) 1276 (1263) 

ES1422 0.768 (0.768) 17.7 (17.8) -1.4 (-0.6) 1217 (1335) 

ES1944 0.773 (0.775) 17.8 (17.7) -0.6 (-1.0) 1151 (1144) 

ES1940 0.776 (0.778) 17.7 (17.6) -1.8 (-1.5) 1103 (1189) 

ES1426 0.790 (0.791) 17.2 (17.1) -2.3 (-2.3) 1051 (1060) 

ES1938 0.772 (0.765) 17.9 (18.0) -1.7 (-2.4) 1172 (1217) 
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ES0120 0.781 (0.778) 17.5 (17.4) -3.2 (-2.6) 1083 (1230) 

ES1525 0.792 (0.794) 17.2 (17.1) -3.6 (-3.6) 1043 (1059) 

ES1939 0.792 (0.796) 18.7 (18.9) -8.2 (-8.7) 825 (810) 

ES1946 0.801 (0.797) 18.6 (19.1) -8.6 (-9.5) 631 (531) 

ES1193 0.720 (0.722) 21.0 (21.3) -9.4 (-10.1) 606 (591) 

ES1947 0.773 (0.785) 19.2 (21.1) -8.5 (-12.6) 667 (377) 

ES1945 0.687 (0.741) 26.1 (26.0) -16.9 (-17.6) 275 (180) 

TROPOMI-only 0.740  19.3  0.8  1185  

5 stations 0.792 (0.793) 17.1 (17.0) -1.8 (-1.9) 1084 (1075) 

All stations 0.791 (0.792) 17.3 (17.2) 1.2 (1.2) 1332 (1336) 

 

The emission optimisation depends on the selected location. Local model issues or biased reference measurement can lead to 

biases at other locations. For example, using data of road station ES1943 (Plaza Elíptica) introduces an overall bias of 17.2 425 

µg/m³. Retina apparently underestimates the high concentrations at this site, and compensates by adding emissions, resulting 

in overestimations elsewhere. Combining the data with satellite data reduces the bias significantly. This improvement can be 

seen at all sites with large absolute bias. The impact of the satellite measurements remains limited, however, as only 

corrections around overpass time can be provided.  

For 13 stations the mean absolute bias is below 4 µg/m³. At these sites Retina realistically describes the local concentrations 430 

with the provided traffic and residential proxies. Using one of these stations for emission optimisation, the RMSE and 

correlations are better than when using TROPOMI measurements alone, as the in-situ data provide valuable information on 

the entire diurnal emission cycle. As can be seen from the table, adding satellite data to these ground data does not improve 

the results significantly.  

Increasing the number of in-situ stations enhances the accuracy of simulation results due to compensating errors, especially 435 

when the stations represent a balanced mix of street and background locations. The table shows the results of a test with 5 

stations: ES1525, ES1940 (both street stations); ES0126, ES1937 (both background stations); and ES1947 (a suburban 

background station). It can also be seen that the effect of adding TROPOMI data becomes negligible, as the amount of valid 

daily satellite retrievals is small compared to the 120 daily measurements made by the 5 stations. 

A final test incorporates all 24 reference stations for emission optimisation. No significant change in validation statistics is 440 

observed compared to the 5-station scenario. The resulting RMSE, 17.2 µg/m³, can thus be regarded as the systematic error 

inherent in the Retina approach for hourly NO2 simulation. 

Compared to this full in-situ analysis, TROPOMI-based emissions tend to attribute more emissions to traffic and less to 

residential activity (see Fig. S9), resulting in up to 5 µg/m³ higher concentrations on roads and up to 1.5 µg/m³ lower 

concentrations in urban backgrounds. 445 
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3.3 Results of spatial concentration assimilation 

Spatially assimilating the in-situ observations as described in Sect. 0 reduces simulation biases in the vicinity of an 

observation location (e.g. due to wrong local emissions), while at longer distances it reduces simulation errors due to 

inaccuracies in hourly background concentrations. Table 4 compares the validation results before (i.e. the plain dispersion 

simulation) and after the spatial concentration assimilation of reference measurements. We use a leave-one-out cross-450 

validation: at each validation location the observations of the other 23 locations are assimilated in the simulation fields. 

Based on the average NO2 concentrations (36.2 µg/m³) and the average RMSE found in the validation (17.2 µg/m³), the 

relative error for simulation of hourly NO2 concentrations is estimated to be 48%. The data assimilation increases the 

correlation from 0.79 to 0.90 and reduces the RMSE to 13.0 µg/m³. Therefore, the relative error improves to 36% after 

assimilation, with local systematic biases remaining as the primary source of error. 455 

 
Table 4: Leave-one-out cross validation statistics for spatial concentration assimilation using all reference stations.  

(Statistics for model simulation, based on 24-station emission optimisation, inside parentheses.) 

validation location  

and type 
nearest d (a) n (b) obs (c,d) correlation RMSE (d) bias (d) 

ES0115  street ES1422 0.9 738 44.6 0.882 (0.829) 16.2 (16.3) -9.7 (-5.6) 

ES0118  street ES1939 0.8 733 57.1 0.876 (0.761) 24.7 (22.3) -20.3 (-10.2) 

ES0120  street ES1938 1.7 736 37.5 0.930 (0.792) 9.7 (17.7) 0.6 (5.4) 

ES1426  street ES1532 2.3 739 37.7 0.950 (0.862) 12.1 (15.4) 8.1 (6.3) 

ES1521  street ES1940 2.4 730 37.1 0.923 (0.807) 14.4 (16.3) -8.5 (-0.2) 

ES1525  street ES1938 1.6 737 38.0 0.858 (0.768) 19.5 (22.0) 11.7 (11.7) 

ES1938  street ES1525 1.6 738 34.6 0.924 (0.783) 9.8 (17.7) 1.3 (5.6) 

ES1940  street ES0120 1.8 739 36.6 0.936 (0.787) 9.3 (17.0) -0.9 (4.5) 

ES1943  street ES0126 1.6 736 61.1 0.880 (0.759) 18.3 (24.9) -1.1 (-7.8) 

ES0124  urban background ES0120 3.5 734 35.5 0.955 (0.835) 9.1 (14.7) -4.1 (2.0) 

ES0125  urban background ES1943 4.2 739 43.3 0.923 (0.847) 17.0 (21.4) -8.5 (-9.9) 

ES0126  urban background ES1943 1.6 738 35.7 0.945 (0.842) 8.6 (13.9) -2.4 (-2.6) 

ES1422  urban background ES0115 0.9 668 34.0 0.928 (0.785) 8.6 (14.9) 2.3 (2.7) 

ES1532  urban background ES1426 2.3 739 36.3 0.941 (0.846) 9.2 (14.1) -2.1 (-0.1) 

ES1645  urban background ES1942 1.6 737 35.7 0.932 (0.831) 9.9 (15.3) -0.7 (-1.3) 

ES1937  urban background ES1939 1.8 739 36.4 0.913 (0.800) 11.9 (15.9) -4.7 (0.1) 

ES1939  urban background ES0118 0.8 738 25.9 0.870 (0.693) 15.1 (18.8) 9.9 (7.8) 

ES1941  urban background ES1532 3.7 737 38.5 0.890 (0.801) 13.3 (16.6) -5.8 (-5.1) 

ES1942  urban background ES1645 1.6 734 44.1 0.922 (0.789) 14.5 (19.5) -8.3 (-5.2) 
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ES1944  urban background ES1947 2.6 737 31.2 0.923 (0.818) 10.4 (15.1) -3.4 (2.8) 

ES1947  urban background ES1944 2.6 737 25.1 0.902 (0.796) 11.4 (16.4) 3.9 (6.8) 

ES1193  suburban backgr. ES0115 3.0 735 21.6 0.807 (0.716) 11.9 (14.2) 3.6 (3.4) 

ES1945  suburban backgr. ES1521 6.9 739 15.4 0.674 (0.688) 15.9 (16.2) 9.3 (10.3) 

ES1946  suburban backgr. ES1942 2.4 739 25.3 0.913 (0.767) 12.2 (17.0) 7.1 (6.8) 

Mean   734 36.2 0.900 (0.792) 13.0 (17.2) -0.9 (1.2) 

 

(a) Distance to the nearest observation site (in km)  460 
(b) Number of measurements  

(c) Mean observation at this location 

(d) In units of µg/m³ 

 

Note that an additional bias can be introduced at places where the covariance is wrongly defined. This happens for instance 465 

at street location ES0118 and city park ES1939 (El Retiro), which are at 800 m distance. The high concentrations found at 

ES0118 influence the spatial interpolation towards the urban background. Vice versa, the low concentrations measured in El 

Retiro park propagate towards the nearby street site, contributing to a negative bias. 

Figure 11 illustrates the performance of Retina at a street location, an urban background location, and a suburban 

background location. It shows the hourly NO2 series for a representative week when only satellite observations are used in 470 

the simulation, representing the case for a city without any air quality observation network. This is compared with time 

series where all in-situ observations are used, representing a city with an extensive ground network. Not surprisingly, the 

best results are obtained when all reference measurements are used. 
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Figure 11: Comparison of NO2 time series at different locations for a week in March 2019. The red line represents simulations 475 
from the Retina algorithm using only TROPOMI observations for emission optimisation; the blue line represents the leave-one-out 
time series using data from all other reference stations.  

Figure 12 shows the average NO2 concentration map of Madrid based on all hourly concentration fields of March 2019. 

Highest concentrations are found on and near the highways, such as the M30 surrounding the city centre in the East and 

South. Lowest concentrations are found in the sparsely populated El Pardo area in the north. Local concentration reductions 480 

are found in e.g. El Retiro park. Note the accumulation of air pollution in the southwest area of the municipality due to 

predominant winds (1-3 Beaufort) from the northeast in this period. 
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Figure 12: Average surface NO2 concentrations in Madrid for March 2019, using the Retina algorithm with hourly data from 24 
reference stations for emission estimation and spatial assimilation. The right panel zooms in on an 5x5 km2 area around Retiro city 485 
park, where concentrations are notably lower than in nearby roads and built-up areas.  

4 Discussion 

Retina v2 introduces a more realistic NO₂ chemistry scheme, an improved background concentration estimation, and a better 

stabilised emission optimisation. The spatial assimilation of measurements is improved by including time-dependent 

dispersion characteristics in the model error covariances. Most notably, the algorithm is now capable to incorporate 490 

tropospheric column concentrations retrieved with satellite instruments, such as TROPOMI on the Sentinel-5 Precursor 

(S5P) satellite.  

Satellites in polar orbits, such as S5P, pass over the same area just once each day, therefore missing a substantial part of the 

diurnal cycle of NO2. Direct assimilation of NO2 satellite observations is not very useful due to the relatively short lifetime 

of NO2, which limits the system's memory to just a few hours. Instead, we use the satellite retrievals to improve estimations 495 

of urban NOx emissions. As the number of daily TROPOMI observations over the urban area is limited (14 on average for 

the Madrid domain), it is important to get the most out of each satellite retrieval by interpolating the model simulations to the 

individual footprints at exact overpass time. Applying the averaging kernel minimizes errors resulting from profile 

assumptions in the retrieval method. 
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4.1 Comparison with relevant studies 500 

NO2 concentrations in urban areas vary strongly in space and time. Unsurprisingly, the CAMS regional ensemble is unfit to 

represent local NO2 concentrations in urban areas. Due to its coarse resolution, its interpolated values underestimates 

concentrations by 10.0 µg/m³ in Madrid in March 2019. However, the CAMS ensemble provides valuable input data for 

background concentration estimation and NO2/NOx column ratios for downscaling algorithms such as Retina. 

The validation results show that an urban dispersion model can successfully be built based on CAMS input data and proxy 505 

data for traffic and residential emissions. Validation of the hourly NO2 simulations based on periodic emission optimisation 

by TROPOMI show a reduction of the mean bias to 0.8 µg/m³ and an average RMSE of 19.3 µg/m³. Part of the error is 

caused by wrong assumptions in the diurnal emission cycle, as TROPOMI is only able to capture the emissions around its 

overpass time. Finding a better a priori diurnal emission cycle is subject to further investigation. 

CALIOPE-Urban, an advanced dispersion model based on a detailed emission inventory and running on a supercomputer, 510 

produces an RMSE of 23 µg/m³ for hourly simulations in 2019 for the city of Barcelona (Criado et al., 2023). This RMSE 

reduces to 16 µg/m³ when reference data of 12 stations is spatially assimilated using Universal Kriging, and further to 12 

µg/m³ when also an additional basemap layer based on Palmes-tube measurements is included. Schneider et al. (2017) find a 

citywide RMSE of 14.3 µg/m³ for a similar data fusion method of 24 low-cost sensors in the EPISODE model for Oslo in 

January 2016. From Table 4 can be seen that these figures are comparable to the RMSE of 13 µg/m³ by Retina when all 515 

reference measurements are spatially assimilated. 

Alternatively, several studies use a machine learning approach to generate hourly surface concentrations maps from a 

collection of data sets. Kim et al. (2021) train a predictive model including data from TROPOMI and 340 reference stations 

in Switzerland and northern Italy, resulting in a spatio-temporal correlation of 0.79 with 40 test sites. Table 3 and 4 show that 

the correlation of Retina simulations with reference measurements in Madrid is 0.74 when only TROPOMI is used (i.e. no 520 

surface measurements), increasing to 0.79 when 5 or more surface stations are also used for emission optimisation. Best 

correlation (0.90) is obtained when the reference measurements are also spatially assimilated.  

Fu et al. (2023) use data from 266 reference stations and 666 low-cost sensors (LCS) in the Tangshan area (East China). 

TROPOMI data are used in XGBoost models to fill in missing data at reference sites and to enhance the observations at LCS 

sites. When trained with reference data only, their predictive model has a correlation of 0.79 and an RMSE of 17.1 µg/m³. 525 

The RMSE improves to 16.9 µg/m³ when including TROPOMI, and further to 16.3 µg/m³ when all LCS observations are 

also included in the training. Table 3 shows that for Retina-Madrid the RMSE is 17.0 µg/m³ when 5 reference stations for 

emission optimisation are used.  

By adding more in-situ data, the RMSE of hourly simulations remains around 17 µg/m³, corresponding to a relative error of 

48%, which can be considered as the systematic error of the Retina dispersion modelling. This is an improvement over the 530 

previous version described in Mijling (2020), which had an estimated error of 58%. More research is needed to further 

reduce this error by addressing its various sources, such as: 
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● Using better proxy data, particularly regarding the relative distribution of traffic volumes. 
● Including emission hot spots from industry and power generation. 
● Improving local dispersion modelling by accounting for e.g. traffic junctions, speed bumps, and street canyons.  535 
● Using more realistic estimates of the background concentration field.  
● Improving NOx chemistry, e.g. by introducing variable NO2 lifetimes.  

Urban NOx emissions can be calculated from the emission optimisation results by summing Eq. (2) over hours and grid 

cells. The observation-based NOx emission estimates for March 2019 in Madrid vary between 1185 Mg NO (when derived 

from TROPOMI observations) and 1336 Mg NO (when derived from in-situ observations at 24 locations). This is larger than 540 

the 705 Mg NO found in the CAMS emission inventory for this month (Soulie et al., 2024) but is in correspondence with the 

DECSO v6.3 inventory (Van der A et al., 2024; based on TROPOMI observations and chemical transport model 

calculations) being a factor 2 larger than the CAMS inventory. The potential of Retina to estimate realistic urban emissions 

is subject of further investigation. 

4.2 Calculation time 545 

The Retina v2 algorithm is implemented in Python scripts. Calculations were performed on a Linux workstation with an Intel 

Core i7-9700 at 3GHz, having a single CPU and 8 cores. The total calculation for a high-resolution surface simulation at a 

certain hour takes 75 s. The dispersion kernel calculation using AERMET and AERMOD takes 3.4 s of this time. The 

preparation of the emission proxy data takes 6.6 s, mostly spent on interpolation and gridding of the traffic volumes. The 

surface concentration simulation takes 60.5 s, of which 96% of the time is spent on Hadamard product calculations. Finally, 550 

the spatial interpolation of the surface measurements takes 4.2 s. 

The emission optimisation is repeated once every simulation day. This takes 188 seconds if only surface measurements are 

considered (159 s are spent in emission proxy preparation). It takes ~75 s longer if TROPOMI observations are also taken 

into account; time which is needed to perform the column simulations and the spatio-temporal interpolation to individual 

retrieval footprints. 555 

In practice the computational time is less since the emission proxy calculations are shared between the simulation and the 

emission optimisation, requiring computation only once. The Hadamard product calculation scales linearly with the number 

of receptor points. For the surface concentration simulation this forms currently a computational bottleneck. However, as it 

involves straightforward matrix operations, the total computation time can be significantly reduced by parallelizing these 

tasks across multiple cores or GPUs. 560 

4.3 Use of low-cost sensor data 

As shown before in Mijling (2020), the Retina algorithm can also be applied to networks of low-cost sensors. Based on 

Bayesian principles in both emission optimisation and spatial assimilation, it effectively manages the greater inaccuracies 

associated with LCS data. The larger errors in the in-situ observations will slow down convergence to practical emission 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



29 
 

estimates in the optimisation phase (i.e., a longer lag period), but this is not necessarily a problem when emission trends are 565 

small over time.  

Note that most NO2 low-cost sensors used in current experimental networks suffer from creeping biases (Li et al., 2021, 

WMO, 2023). Also reference measurements can be biased due to interfering gases (Steinbacher et al., 2007) or poor 

maintenance. Although always special care must be taken to remove this bias before application in Retina, integrating 

satellite measurements can help to reduce the introduced bias in the monitoring system. 570 

5 Conclusion 

The Retina algorithm has been designed to produce realistic high-spatiotemporal-resolution maps of urban air pollution 

based on heterogeneous air quality measurements. In this study, we implemented the updated Retina algorithm for NO2 

concentrations in Madrid and assessed the performance under different observation scenarios during March 2019. The 

updated algorithm, Retina v2, is faster and more accurate than its predecessor described in Mijling (2000). Most notably, it is 575 

now capable to incorporate tropospheric column concentrations retrieved with satellite instruments.  

The use of proxy data for the description of urban emissions allows for convenient portability to other urban domains. 

Periodic emission optimisation guarantees that simulations match the observations, either satellite measurements, in-situ 

measurements, or both. Physics-based and running with modest computational power, Retina has comparable or better 

performance than data fusion methods depending on advanced, computational-demanding dispersion models, as well as 580 

machine learning approaches depending on extensive of datasets. 

When emissions are optimised using only TROPOMI measurements (representing the case of a city without an in-situ 

network), simulations of hourly NO2 concentrations in March 2019 show a citywide RMSE of 19.3 µg/m³ with a bias of 0.8 

µg/m³. More accurate results are achieved when hourly in-situ measurements are used, as they allow for a better estimation 

of the diurnal emission cycle. However, if only a single station is available, and its measurements are biased or located in an 585 

area where dispersion modelling is problematic—due to e.g. incorrect proxy data—it can introduce systematic biases across 

the entire model domain. Incorporating satellite measurements or data from additional ground stations helps to reduce this 

bias.  

The spatial interpolation of in-situ measurements in the simulation results improves the accuracy significantly: near 

observation sites it reduces simulation biases (e.g. due to inaccurate local emissions), and over larger distances it reduces 590 

simulation errors due to errors in background concentrations. Generally, including more stations leads to better results. Using 

all 24 ground stations in Madrid, the average correlation of hourly NO2 time series increases to 0.90, with an RMSE of 13.0 

µg/m³, corresponding to a relative error of 36%. Occasionally, the spatial interpolation introduces an extra bias. This 

suggests that there is further room for improvement in the covariance model used for interpolation. 

The assimilation experiments show that the added value of TROPOMI measurements becomes negligible when hourly data 595 

from 5 or more stations at representative locations is included. For many cities, however, TROPOMI can made a significant 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



30 
 

contribution. From the approximately 2800 European cities with a population above 50,000, the European Environment 

Agency (EEA) AirBase (EEA, 2018) lists 2035 cities with at least one NO2 monitoring station, and only 71 cities with 5 or 

more NO2 stations (see Table S1). 

The impact of satellite measurements in the Retina algorithm will be larger if observations at different times throughout the 600 

day could be included. Therefore, the next step will be preparation for data of the Sentinel-4 instrument aboard the MTG-S 

satellite, expected to be launched in late 2025. Operating from a geostationary orbit, Sentinel-4 will provide hourly 

measurements of NO2 in Europe at 8x8 km2 resolution with a revisit time of approximately 60 minutes. Once alternatives for 

CAMS background concentrations are available beyond the European domain, applications can extend to geostationary 

instruments such as GEMS (aboard GEO-KOMPSAT-2B, monitoring East Asia) and TEMPO (aboard Intelsat-40E, 605 

monitoring North America).  
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GitLab at https://doi.org/10.21944/retina-v2-madrid-2019 (Mijling, 2025).  A list of online sources of raw input data can also 

be found here. 610 

Supplement 

The supplement related to this article is available online at: XXX. 

Author contribution 

BM conceptualized and designed the Retina algorithm, including coding and data analysis, and wrote the draft of the 

manuscript. HE provided scientific feedback and suggestions for algorithm improvement. PM and SH were involved in code 615 

improvement and postprocessing of the model output. DG and MdV were responsible for collecting the in-situ data. All co-

authors helped in editing suggestions to the manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



31 
 

Acknowledgements 620 

The authors wish to acknowledge the people behind the data sources used in this study, most notably the Madrid authorities 

(traffic and reference measurements), the CAMS community (background and column concentrations), and the TROPOMI 

team (tropospheric NO2 column retrievals). 

Financial support 

This research has been supported by the European Space Agency (ESA/ESRIN) in the CitySatAir project (contract 625 

no. 4000131513/20/I-DT), part of the Earth Observation for Society program.  

References 

Boersma, K.F., Jacob, D.J., Trainic, M., Rudich, Y., DeSmedt, I., Dirksen, R. and Eskes, H.J.: Validation of urban NO 2 

concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ 

surface measurements in Israeli cities, Atmos. Chem. Phys., 9(12), pp.3867-3879, 2009. 630 

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G. and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides 

probed from space. Science 333, 1737–1739, DOI: 10.1126/science.1207824, 2011 

CAMS: Annual report on the evaluation of validated re-analyses for 2019, CAMS2_83_2021SC1_D83.2.2.1-

2019_202201_VRA2019 evaluation_v2, issued by INERIS/F. Meleux, date: 16/02/2022, 

https://atmosphere.copernicus.eu/regional-services; last access 26 April 2024, 2022. 635 

Chen, T., and Guestrin, C.: XGBoost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining - KDD ’16, ACM Press, San Francisco, California, USA (2016), 

pp. 785-794, 2016. 

Criado, A., Armengol, J. M., Petetin, H., Rodriguez-Rey, D., Benavides, J., Guevara, M., Pérez García-Pando, C., Soret, A., 

and Jorba, O.: Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with 640 

CALIOPE-Urban v1.0, Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023. 

https://gmd.copernicus.org/articles/16/2193/2023/, 2023. 

Cummings, L.E., Stewart, J.D., Kremer, P., Shakya, K.M.: Predicting citywide distribution of air pollution using mobile 

monitoring and three-dimensional urban structure, Sustainable Cities and Society,76, p.103510, 2022. 

Daley, R.: Atmospheric data analysis, Cambridge Atmospheric and Space Science Series, Cambridge University Press, 645 

Cambridge, https://doi.org/10.1002/joc.3370120708, 1991.   

Denby, B. R., Gauss, M., Wind, P., Mu, Q., Grøtting Wærsted, E., Fagerli, H., Valdebenito, A., and Klein, H.: Description of 

the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model, Geosci. Model Dev., 13, 6303–

6323, https://doi.org/10.5194/gmd-13-6303-2020, 2020. 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



32 
 

EEA: AirBase - the European Air quality dataBase, Version 8, European Environment Agency, 650 

https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8, (Accessed November 6, 2019), 

2018.  

Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 

1285–1291, https://doi.org/10.5194/acp-3-1285-2003, 2003. 

Eskes, H.J., Van Geffen, J.H.G.M., Boersma, K.F., Eichmann, K.-U., Apituley, A., Pedergnana, M., Sneep, M., Veefkind, 655 

J.P., and Loyola, D.: Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Nitrogen Dioxide, 

https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide.pdf, 2022. 

Freire S., MacManus K., Pesaresi M., Doxsey-Whitfield E., Mills J. : Development of new open and free multi-temporal 

global population grids at 250 m resolution. Geospatial Data in a Changing World; Association of Geographic Information 

Laboratories in Europe (AGILE), AGILE 2016, 2016. 660 

Fu, J., Tang, D., Grieneisen, M.L., Yang, F., Yang, J., Wu, G., Wang, C. and Zhan, Y.: A machine learning-based approach 

for fusing measurements from standard sites, low-cost sensors, and satellite retrievals: Application to NO2 pollution hotspot 

identification, Atmos. Environ., 302, p.119756, 2023. 

GGD: Foutenbeschouwing (revisie) kalibratie van eerstelijns standaard, Public Health Service of Amsterdam (GGD), 

GGD/LO 14-1134, July 2014, (in Dutch), 2014.  665 

Harrison R.M.: Urban atmospheric chemistry: a very special case for study, Climate and Atmospheric Science, 1, 20175, 

2018. 

He, M.Z., Yitshak-Sade, M., Just, A.C., Gutiérrez-Avila, I., Dorman, M., De Hoogh, K., Mijling, B., Wright, R.O., and 

Kloog, I.: Predicting fine-scale daily NO2 over Mexico city using an ensemble modeling approach, Atmospheric Pollution 

Research 14, 6, p.101763. https://doi.org/10.1016/j.apr.2023.101763, 2023. 670 

Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., and Briggs, D.: A review of land-use regression 

models to assess spatial variation of outdoor air pollution. Atmos. Environ.  42, 7561–7578, 2008.  

Kakosimos K.E., Hertel, O., Ketzel, M., and Berkowicz, R.: Operational Street Pollution Model (OSPM)–a review of 

performed application and validation studies, and future prospects, Environmental Chemistry, Dec 21;7(6):485-503, 2010. 

Khomenko, S., Cirach, M., Barrera-Gómez, J., Pereira-Barboza, E., Iungman, T., Mueller, N., Foraster, M., Tonne, C., 675 

Thondoo, M., Jephcote, C., Gulliver, J., Woodcock, J., and Nieuwenhuijsen, M.: Impact of road traffic noise on annoyance 

and preventable mortality in European cities: a health impact assessment. Environment International, Volume 162, 107160, 

ISSN 0160-4120, https://doi.org/10.1016/j.envint.2022.107160, 2022. 

Kim, Y., Wu, Y., Seigneur, C., and Roustan, Y.: Multi-scale modeling of urban air pollution: development and application of 

a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1), Geosci. Model Dev., 11, 611–680 

629, https://doi.org/10.5194/gmd-11-611-2018, 2018. 

Kim, M., Brunner, D. and Kuhlmann, G.: Importance of satellite observations for high-resolution mapping of near-surface 

NO2 by machine learning. Remote Sensing of Environment, 264, p.112573, 2021. 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



33 
 

Krol, M., Van Stratum, B., Anglou, I., and Boersma, K. F.: Evaluating NOx stack plume emissions using a high-resolution 

atmospheric chemistry model and satellite-derived NO2 columns, Atmos. Chem. Phys., 24, 8243–8262, 685 

https://doi.org/10.5194/acp-24-8243-2024, 2024. 

Lefebvre, W., Fierens, F., Trimpeneers, E., Janssen, S., Van de Vel, K., Deutsch, F., Viaene, P., Vankerkom, J., Dumont, G., 

Vanpoucke, C., Mensink, C., Peelaerts, W., and Vliegen, J.: Modeling the effects of a speed limit reduction on traffic-related 

elemental carbon (EC) concentrations and population exposure to EC, Atmos. Environ., 45, 197–207, 

https://doi.org/10.1016/j.atmosenv.2010.09.026, 2011.  690 

Li, J., Hauryliuk, A., Malings, C., Eilenberg, S. R., Subramanian, R., and Presto, A. A.: Characterizing the Aging of 

Alphasense NO2 Sensors in Long-Term Field Deployments, ACS Sensors, 6, 2952–2959, 

https://doi.org/10.1021/acssensors.1c00729, 2021. 

Lorente, A., Boersma, K.F., Eskes, H.J., Veefkind, J.P., Van Geffen, J.H.G.M., De Zeeuw, M.B., Denier Van Der Gon, 

H.A.C., Beirle, S., and Krol, M.C.: Quantification of nitrogen oxides emissions from build-up of pollution over Paris with 695 

TROPOMI. Sci Rep 9, 20033 (2019). https://doi.org/10.1038/s41598-019-56428-5, 2019. 

Makido, Y., Dhakal, S., and Yamagata, Y.: Relationship between urban form and CO2 emissions: Evidence from fifty 

Japanese cities, Urban Climate, 2, 55–67, https://doi.org/10.1016/j.uclim.2012.10.006, 2012.  

Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., 

Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., Denier van der Gon, H. A. C., Drouin, A., 700 

Elbern, H., Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., 

Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, 

L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, 

A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., 

Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional air quality forecasting system over 705 

Europe: the MACC-II daily ensemble production, Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-

2015, 2015.  

Masey, N., Hamilton, S., and Beverland, I. J.: Development and evaluation of the RapidAir® dispersion model, including the 

use of geospatial surrogates to represent street canyon effects, Environ. Modell. Softw., 108, 253–263, 

https://doi.org/10.1016/j.envsoft.2018.05.014, 2018.  710 

METEO FRANCE, Institut national de l'environnement industriel et des risques (Ineris), Aarhus University, Norwegian 

Meteorological Institute (MET Norway), Jülich Institut für Energie- und Klimaforschung (IEK), Institute of Environmental 

Protection – National Research Institute (IEP-NRI), Koninklijk Nederlands Meteorologisch Instituut (KNMI), Nederlandse 

Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO), Swedish Meteorological and Hydrological Institute 

(SMHI) and Finnish Meteorological Institute (FMI) (2020): CAMS European air quality forecasts, ENSEMBLE 715 

data. Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store (ADS).  (Accessed on 01-Jun-

2024), https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-europe-air-quality-forecasts 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



34 
 

Mijling, B., Jiang, Q., de Jonge, D., and Bocconi, S.: Field calibration of electrochemical NO2 sensors in a citizen science 

context, Atmos. Meas. Tech., 11, 1297–1312, https://doi.org/10.5194/amt-11-1297-2018, 2018.  

Mijling, B.: High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its 720 

application to Amsterdam, Atmos. Meas. Tech., 13, 4601–4617, https://doi.org/10.5194/amt-13-4601-2020, 2020. 

Mijling, B.: Retina v2 code and input data, Royal Netherlands Meteorological Institute (KNMI), 

https://doi.org/10.21944/retina-v2-madrid-2019, 2025. 

Morillas, C., Alvarez, S., Serio, C., Masiello, G., and Martinez, S.: TROPOMI NO2 Sentinel-5P data in the Community of 

Madrid: A detailed consistency analysis with in situ surface observations, Remote Sensing Applications: Society and 725 

Environment, Volume 33, 101083, ISSN 2352-9385, https://doi.org/10.1016/j.rsase.2023.101083., 2024. 

Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz,, W. A., and Bartonova, A.: Mapping urban air quality in near real-

time using observations from low-cost sensors and model information, Environ. Int., 106, 234–

247, https://doi.org/10.1016/j.envint.2017.05.005, 2017. 

Snyder, E.G., Watkins, T.H., Solomon, P.A., Thoma, E.D., Williams, R.W., Hagler, G.S., Shelow, D., Hindin, D.A., Kilaru, 730 

V.J. and Preuss, P.W.: The changing paradigm of air pollution monitoring, Environmental science & technology, 47(20), 

pp.11369-11377, 2013. 

Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S., Buchmann, B., Ordóñez, C., Prévôt, A.S. and Hueglin, C.: 

Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. Journal of 

Geophysical Research: Atmospheres, 112(D11), 2007. 735 

Soulie, A., Granier, C., Darras, S., Zilbermann, N., Doumbia, T., Guevara, M., Jalkanen, J.-P., Keita, S., Liousse, C., Crippa, 

M., Guizzardi, D., Hoesly, R., and Smith, S. J.: Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus 

Atmosphere Monitoring Service simulations of air quality forecasts and reanalyses, Earth Syst. Sci. Data, 16, 2261–2279, 

https://doi.org/10.5194/essd-16-2261-2024, 2024. 

Tilloy, A., Mallet, V., Poulet, D., Pesin, C., and Brocheton, F.: BLUE-based NO2 data assimilation at urban scale, J. 740 

Geophys. Res.-Atmos., 118, 2031–2040, https://doi.org/10.1002/jgrd.50233, 2013. 

Van der A, R. J., Ding, J., and Eskes, H.J.: Monitoring European anthropogenic NOx emissions from space, Atmos. Chem. 

Phys., 24, 7523–7534, https://doi.org/10.5194/acp-24-7523-2024, 2024. 

Van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, 

A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and 745 

comparisons with OMI and ground-based data, Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-

2022, 2022. 

WMO: GAW Report No. 293, Integrating Low-cost Sensor Systems and Networks to Enhance Air Quality Applications, 

https://library.wmo.int/idurl/4/68924, last accessed 1 November 2024, 2024. 

WHO: WHO global air quality guidelines. Particulate matter (PM 2.5 and PM 10), ozone, nitrogen dioxide, sulfur dioxide 750 

and carbon monoxide, Geneva: World Health Organization, 2021. 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



35 
 

WHO: WHO ambient air quality database, 2022 update: status report, Geneva: World Health Organization, 2023. 

 

https://doi.org/10.5194/egusphere-2025-202
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.


